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Abstract—The buoyancy force arising from temperature gradients in cold water is bidirectional if the
temperature range spans that of the density extremum. Many large scale and subtle consequences of this
are now known, for some of the most common flow configurations. The first calculations for horizontal
flows encountered a wide range of conditions for which boundary-layer solutions were not obtained.
Results here narrow that range considerably. They also accurately determine the residual gap of no
solutions, in terms of a density extremum parameter R. Of equal interest, these calculations have found
multiple solutions over ranges of R, on each side of the gap. In some regions, the properties of the second
set of solutions are very different and unusual, among buoyancy induced flows. Very weak flows are found
which, nevertheless, may be very unstable. Extremely low heat transfer rates arise under some conditions.

INTRODUCTION

THE HEAT transfer and flows arising from buoyant
fluids adjacent to horizontal or nearly horizontal sur-
faces have not been studied as extensively as those
adjacent to vertical surfaces and in freely rising
plumes. However, these flows arise in many appli-
cations, both in the environment and in technology.
The flows of concern here are those adjacent to a
horizontal surface, in an extensive ambient medium,
as a result of a surface temperature different from that
of the ambient medium. Past observations of flows
arising from isolated surfaces have shown the exist-
ence, close to the surface, of a boundary-layer mode
of convection, followed, after a region of instability,
by a cellular motion. Schmidt [1] was apparently the
first to investigate experimentally flow above a flat,
horizontal surface.

With only thermal buoyancy effects, and the usual
approximations concerning density levels and differ-
ences, often called the Boussinesq or conventional
approximations, Stewartson [2] analyzed transport
adjacent to a semi-infinite isothermal surface. The
flow was assumed to arise downstream from a single
leading edge. Gill er al. [3] later showed that the
necessary condition for such flows was that the buoy-
ancy force be away from the surface, as for a heated
surface facing upward or a cooled surface facing
downward.

Rotem and Claassen {4, 5] obtained solutions for
an isothermal horizontal surface for several specific
values of the Prandtl number. Asymptotic results for
zero and infinite Prandtl numbers are also given in
ref. [4]. Experimental observations with a schlieren
system clearly indicated the existence of a boundary

fayer near the leading edge on the upper side of a
heated horizontal surface, insulated on the bottom
face. Rotem [6] and Rotem and Claassen [4] also for-
mulated the similarity solution for horizontal axisym-
metric boundary-layer flow adjacent to an unbounded
horizontal surface and gave solutions for an iso-
thermal surface condition for an unspecified Prandt!
number. These are sometimes called disk flows, in
contrast to the plane flows previously considered.

Pera and Gebhart [7, 8] studied both flow and the
stability of horizontal and slightly inclined plane
flows. For a horizontal orientation, the experimental
results in air indicated an attached region, with
characteristics close to those predicted. This region
was followed downstream by a flow separation in the
form of very rapidly growing longitudinal vortices.
This latter consequence, along with upstream dis-
turbance growth characteristics, implied an initiating
role for upstream two-dimensional spanwise dis-
turbances.

For the disk flows studied in refs. [4, 6], Blanc
and Gebhart [9] discuss the limits of physical reason-
ableness of a downstream variation of t,—1,, ie.
the difference between the local surface and ambient
medium temperatures. Solutions are given for both
isothermal and uniform flux conditions, for ¢, uni-
form. Then procedures are presented which give exact
solutions of some disk and plane flows.

The present paper treats horizontal plane flows,
generated in both pure and saline water, at tem-
perature conditions which may result in density
extrema in the convection region, ¢.g. at about 4°C at
a pressure of 1 bar in pure water. Such flows are found
in the melting and freezing of ice surfaces and in
processing technology.
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a,b,c defined in equations (9), (17) and (18)
B buoyancy force, g(p., —p)

specific heat of water

f nondimensional streamfunction

G modified Grashof number, 5(Gr,/5)"°
Gr,  Grashof number

g acceleration due to gravity

k thermal conductivity

P nondimensional motion pressure

Pr Prandt] number

P motion pressure

q exponent in density equation (2)

R (tm‘too)/(t()_too)
s

salinity

t temperature

'n temperature where the density is
maximum

to surface temperature

t, ambient temperature

u tangential velocity component

v normal velocity component

NOMENCLATURE

W nondimensional local buoyancy force
X distance along the surface
y distance normal to the surface.

Greek symbols

« coefficient in density equation (2)

B coefficient of thermal expansion

7 nondimensional distance in the boundary
region

7.  valueofnatthe outside edge of the region
of calculation

v kinematic viscosity
density

Frm maximum density
P density of ambient fluid

¢ nondimensional temperature,
(1=1)/(to—15)
¥ streamfunction.
Superscript

differentiation with respect to #.

These were first studied by Gebhart et al. [10], for
both plane and disk flows, using a formulation for
transport similar to that given by Gebhart and Mol-
lendorf [11] for vertical flows. Buoyancy-driven trans-
port may be, relatively, very complicated when the
imposed temperature conditions, ¢, and ¢, are low,
in the region of the density extremum, at 7. If ¢, and
¢, Span t,,, a buoyancy force reversal arises across the
thermal layer, all the way downstream in the fluid. If
this is sufficiently severe, flow reversal may be gen-
erated across the transport region. This tendency, in
turn, may lead to complete reversal of the overall flow
patterns. This is called convective inversion.

These effects, in terms of the local buoyancy force,
B = g(p,—p) are depicted in Fig. 1. The density vs
temperature variation sketched in Fig. 1(a) shows
four typical choices (1, 2, 3 and 4) of the imposed tem-
perature conditions ¢, and f,, in relation to the
temperature at the extremum, ¢,. These three tem-
peratures are related as follows:

Rzim(ssp)_igc_‘ (1)

The four choices in Fig. 1 represent the four regimes
of buoyancy force variation, B = g{p_—p), which
arise with an extremum. These regimes are shown,
over the range of R in Fig. 1(b). For choice 1, B is
everywhere upward, or positive, across the thermal
region and R < 0. For 2, B is everywhere downward.
This condition persists for all larger values of ¢, ; until
p(to.2) = p(i,.5), for a symmetric density variation.
This is the region R > 1/2. For 3, the buoyancy force

is upward near the surface, with an outside region of
buoyancy force reversal, to downward. This is the
range of R just above R = 0. For choice 4, B is
downward near the surface and upward further out.
This is the region below R = 1/2. Intermediate in the
range 0 < R < 1/2, the opposing effects are com-
parable. For choices 3 and 4, local flow reversals arise.
Then the net flow direction is unclear. It is in this
region that a gap arises in solutions of the boundary
layer formulation.

The calculations of Gebhart and Mollendorf [11},
for flows adjacent to vertical isothermal surfaces,
cover the ranges of unidirectional buoyancy force,
that is, outside of 0 < R < 1/2. Both pure and saline
water were considered.

The formulation of the local buoyancy force,
B = g{(p ., —p), used the very simple, yet very accurate,
density relation for pure and saline water developed
by Gebhart and Mollendorf [12], given below in equa-
tion {2). It applies to water in the range of t = 0 to
20°C, salinity s = 0 to 40 p.p.t. and pressure p to 1000
bar. The agreement with the most modern density
data over this whole region is about 9 p.p.m. (r.m.s.}.
The agreement with other modern pure water results
is 3.5 p.p.m. (r.m.s.). The relation is

plt,s,p) = pals,p) [1—als, p) 1= t.(s, ¥ (D)

where p,,(s,p) is the maximum density at s and p,
t.(s,p) 1s the corresponding inversion temperature at
maximum density and g(s, p) is the exponent. For pure
water at 1 bar, g = 1.894816, a=9.297173x10"°¢
(°C) 77 and 1, = 4.029325°C. Equation (2) contains
only a single term in temperature. This simplicity is
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Fic. 1. Flow regime characteristics across the range of temperature conditions, f;, 7, and £, {3, p), in terms

of the parameter R = [t,{s, p)~1,.}/(1o—1..). (3) Typical temperature and density conditions; 1, 2, 3 and
4. {b) Buoyancy regimes B = g{p,, —p)in terms of R.

extremely important in analysis of thermally driven
flows in both pure and saline water at low tem-
peratures.

The calculations in ref, {11} used a numerical shoot-
ing method which was very sensitive to buoyancy
force reversals. No solutions were obtained for these
conditions. These reversals tend toward flow reversal
across the boundary region. Carey et al. [13], refining
the numerical method used in ref. [11], found
additional regions of solutions in from both edges of
the range 0 < R < 1/2. However, a gap in the solu-
tions remained, about 0.152 < R « .292, for pure
water and Pr = 11.6. The edges of the gap again arose
from the tendency to flow reversal, outside reversal at
the lower boundary of the gap and inside at the upper.
The gap arises as the net buoyancy force decreases.
These calculations indicated rapid transport par
ameter variations at both edges toward the gap. The
shooting method was not suitable for further progress.
The calculations of Wilson and Lee [14] also indicated
a gap in R where no steady-state solutions, of the full
equations, could be found.

El-Henawy ef al. [15] then used a fixed interval,
adaptive orthogonal collocation, computer code
COLSYS, by Ascher et al. [16] and the multiple-
shooting code, BOUNDS. See Bulirsch and Stoer [17]
and Deuflhard [18]. Further solutions were found.
Caleulations came to the gap on both sides and
sharply defined its extent. The results were ranges,
in R, of multiple steady-state solutions. That is, for
some values of R, there were several solutions, These
solutions were often very different from each other,
in terms of the flow and other transport character-
istics. The gap of no solutions was reduced to
0.1518 < R < 0.2918. The implications of some of

these solutions, concerning instability and transition,
are important,

Horizontal plane flows are subject to the same com-
plexity demonstrated in Fig. 1 and discussed above.
In addition, major ¢ffects are mediated by the motion
pressure field which arises. Reversals of B again occur
in the range 0 < R < 1/2, for an isothermal surface.
The calculations in ref. [10] for pure water, referred
to above, encountered a gap, as the net buoyancy
began to rapidly decrease, coming in on both sides.
With the shooting method used, the residual gap was
0.080 < R < 0.301, for pure water.

The results in the present calculations were obtained
for fixed interval calculations using the code
COLSYS. The calculations were made for Pr = 10.6,
11.6 and 12.6, for each of the extreme values of
g{s,py = 1.897816 and 1.58295 in the density rela-
tion in equation (2). These apply in pure water
at 1 bar and to water of high salinity at high pres-
sure. Again, the gap was narrowed, this time
to 0.090836 < R < 0.20864, for ¢ = 1.897816 and
Pr = 11.6. Multiple solutions were found at both
edges of the gap. The following section sets forth the
formulation of the boundary value problem, in terms
of similarity variables, Then the results and con-
clusions are given.

FORMULATION OF HORIZONTAL
BOUNDARY REGION FLOW

Since the density changes in cold water are very
small, even compared to those in many other liquids,
the uniform density continuity equation applies.
However, the buovancy force B = gi{p.—p) will be
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evaluated from equation (2). The horizontal and ver-
tical force—-momentum balances, the temperature and
continuity equations and the boundary conditions are
written below, in equations (3)—(7). The distance
along the surface from its leading edge is x and y
outward from the surface, in the direction in which
the net buoyancy force prevails. The motion pressure
P, the local difference in pressure from the local ambi-
ent hydrostatic, is generated by buoyancy in equation

@

ou Oou u 1dp,
ua+05—V*a—;i‘—5—a? (3)
19 m o7
0= _-L+£§€_P) 4
p oy P
ot otk 0%
u5§+ L’é;= ‘p’;;g)‘)—z (5)
ou v
6_)2+ @z 0 (6)
u(x,0) = v(x, 0} = u(x, ) = pn(x, 0) = 0, @
t(x,0)=1t, and #(x,00)=1,.

These equations and boundary conditions are at
the same level of boundary-layer approximations as
those which arise in ordinary fluids, with the added
Boussinesq approximation. However, the Grashof
number, which again characterizes the flow, is defined
instead in terms of the different density formulation
necessary here.

The buoyancy force is determined from (2) at a
given level of s and p, where a = a{s, p), pm = Ou(s, D),
In = t,(s,p) and ¢ = g(s, p), as

g(poo‘p)=gapm(|t“tm|q_|too_!mlq)' (8)

With the usual streamfunction, the following trans-
formation is used.

1(x,y) = b(x)y, Y (x,y) = ve(x) f(n) ®

t—1,
b=, —> (10)
P = a(x)P(n). an
Recalling from equation (1) that
EINCY el 2
R==07 (1)

and putting (10) and (1) into (2), we evaluate the
buoyancy force W

Po—pP= apmltﬂ_twlq(ld)_R[q_‘qu)
= opalto—1.1*W(n, R).

The transformation is introduced into (3)~(7). The
following similarity formulation is obtained, in terms
of the stream, pressure and temperature functions f, P
and ¢. The parameters Pr, R and g arise. The primes

(12)
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indicate derivatives with respect to #.

PO =[P =3P =0 (13)
P = W=1¢—RI"—R}" (14)
¢"+3Prg’ f =0 (15)

SO =170) = 1-¢(0) = $(0) = f(c0)
= P(c0)=0. (16)

The relevant local Grashof number, the functions
afx), b(x) and ¢(x) in equations (11) and (9) and the
local Nusselt number are

er = (gx3jv2)alt0 _tcolqs

where G = 5(Gr/5)"* (17)

a(x) = (5v*p/x?) (G/5)*, b(x) = G/5x
and c(x)=G (18)
Nu, = —¢'(0)(Gr./5)'"". 1%

The value of Gr, is again the unit value gx*/v?, times
the nominal units of buoyancy ojf,—¢,|7. However,
this latter quantity is not a reliable indicator. This is
seen as follows. The density curve in Fig. 1 applies for
given values of « and ¢. However, for a given difference
to—t,, very different density differences p, —p arise,
depending on the location of ¢4 and ¢, in relation to
t,.. Recall the regimes shown in Fig. 1(b).

The boundary-layer formulation here applies only
for on-flows at a leading edge. This arises, for B posi-
tive, for flows on the upper side of a surface. For B
negative, the formulation applies on the lower side.

NUMERICAL METHODS

The two-point boundary-value problem (TPBVP)
in equations (13)—(16) has been solved using the For-
tran code COLSYS. This is a TPBVP solver that is
based upon adaptive, orthogonal collocation, using
B-splines [16]. It was chosen for its accuracy, efficiency
and reliability. Also, the degree of the polynomials
employed in the spline approximation to solutions
may be chosen to avoid potential difficulties caused
by the discontinuity in the second derivative of the
buoyancy force relation, W in equation (12), which
arises at ¢ = R. The computation time required was
about 12-15s per solution on a dual CPU Cyber
730 system. Compilation of the driving programs was
done under FTN 4.8, Opt. = 2.

To generate families of solutions, two approaches
were used. The first was simple continuation in the
parameters R, beginning with a single solution found
by using numerical results in ref. [10]. That solution
was taken as the initial guess for a second solution
with R slightly changed. Thereafter, a linear interpo-
lation of two previous solutions was used to generate
the solution for the next desired value of R. The
second approach was to add the trivial equation R = 0
to the system of differential equations, along with
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Fi1G. 2. Transport over the range of R just below the region of major reversal effects, up into R conditions
at which multiple solutions arise. These solutions bound the gap of no known solutions from below. For
an isothermal surface, Pr = 11.6 and ¢ = 1.894816.

the boundary condition f(o0) = k, when R < 0.1, or
instead, — ¢(0) = k, when R > 0.2. Then simple con-
tinuation in k generated solutions, when the slope of
a bifurcation curve of f(0), or of —¢’(0), vs R,
became large. It was sufficient to determine these so-
lutions over the interval (0, %) = 50. To assure this,

these solutions were tested, for sensitivity to 7, near
and below the noses, that is, beyond the points of
vertical tangency in bifurcation diagrams, Figs. 2 and
3. Beyond such noses lie the additional solutions. The
solutions were unchanged to five significant digits for
choices of ,, = 100 and #,, = 150.
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FiG. 3. Transport over the range of R just above the region of major flow reversal effects, down into R

conditions at which multiple solutions arise. These

solutions bound the gap of no known solutions from

above. For an isothermal surface, Pr = 11.6 and ¢ = 1.894816.
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RESULTS Table 2. Conditions, R, and results for solutions below and
. . ) above the gap, for ¢ = 1.894816 and Pr=11.6
Solutions were obtained in the range of buoyancy

force reversals, 0 < R < 1/2. These were continued in R P(0) —¢'{0) 70y Fleo}
from the two boundaries to the regions of multiple
lutions. These regions bound, on the two sides, the ~ Soo ¢ 83P
solutions. 1hese regions bound, on the two sides, 0.0 —0.46309  0.80604  0.12092  0.15416
remaining gap in which no solutions were found. 0.01 —0.45353 079620 0.11792  0.15058
Each set of solutions, those below and above the 0.02 —0.44396 078569  0.11484  0.14664
gap, were obtained for representative values of the two ng —82‘5‘8‘1‘ g;;gﬁ 8%3;;; 8};‘%?
parameters g and R which arise in the formulation in g'os B 041576 074942 010528  0.13163
equations (13)-(16). The values used are ¢ = 1.897816 (g6 —040678 073518  0.10200  0.12480
and 1.58295, for each value Pr = 10.6, 11.6 and 12.6. 0.07 —0.39830  0.71928  0.09870 0.11613
The results for each of these six conditions are given 0.08 —0.39077  0.70082  0.09542  0.10368
0.084 —0.38830  0.69218 009414  0.09628

in Tables 1-6. For all ¢ and Pr conditions the flows 0085193 038768 068936 009377 009350

below the gap result from a predominantly upward 0.088217 —038655 0.68134  D.09286  0.08400
buoyancy force and those above from a pre- 0.089073 —0.38645 0.67866  0.09262  0.08000

dominantly downward buoyancy force. 0.089423  —0.38651  0.67735  0.09254  0.07653
These results indicate the extent of the gap of no ggzgég;’ ‘gggé'{g gg;géz gggggg gggégg

R . e _ . —(1.387 . . .
solutions for each of the six conditions. For g = 0.090822 —0.38778 067030 009226  ©0.06000

1.897816 the gap is about 0.09 < R < 0.21 and for 0.090836 —0.38801  0.66984 0.09227  0.05800
g = 1.58295 it is about 0.08 < R < 0.20. The range of 0.000832 —0.38824  0.66943  0.09229  0.05600
0.000822 —0.38833  0.66925 0.09230 0.05495
0.090730 —0.38894  0.66830 0.09237  0.05000
0.090464 —0.38981  0.66779 0.09231  0.04200

Table 1. Conditions, R, and results for solations below and 0.089991 —0.39086 0.66749  0.09272  0.03000

above the gap, for g = 1.894816 and Pr = 10.6 0089724 039132 066735 0.09282 0.02200
0.089466 —0.39167 0(.66780 0.09291  0.01000
R P(0) — (0} 10) f(s0) 0.089423 —0.35169 0.66797 0.09292  0.00583
0.089404 —0.39170  0.66795 0.09293  0.00400
Below the gap 0.089391 —0.39169 0.66802 0.09293  0.00150
a0 —0.47260  0.79006 0.12525 0.15873 0.089389 039169  0.66804 0.09293  6.00100
0.02 —~(.45306 0.77014 0.11897  0.15094
0.04 ~-0.43369  0.74736  0.11244  0.14129 Above the gap
0.06 —~0.41507  0.72066  0.10571  0.12826 1O ~0.75093  1.0690 0.22943  0.23269
0.67 —~0.40640 070507  0.10230  0.11919 0.80 ~0.57816 101631 0.19445 0.22249
0.08 —0.39874  0.68690 0.09892  0.10602 0.60 ~0.38133  0.94631 0.15254  0.20953
0.09 —0.39527  0.66042 0.09587  0.069 0.50 ~0.27026  0.89952 0.12735 0.20135
0.090156 —0.39565 0.65924  0.09586  0.065 0.38 ~—0.11944  0.82248 0.09056 0.18892
0.090221 —0.39618 0.65808  0.0958%8  0.060 0.30 0.00044  0.74382 0.05838  0.17800
0.090176  —0.39675  0.65723 0.09594  0.055 0.25 0.09440  0.66445 0.03057  0.16945
0.090053 ~039732  0.65664  0.09602  0.05 0.22 0.17482  0.57654 0.00410  0.16383
0.089882 —0.39785 0.65626  0.09611  0.045 0.21 022542 0.50658  —0.01445 0.16282
0.089687 —~0.39835 0.65604  0.09620 0.04 0.20877 0.24211 048000 —-0.02103 0.18327
0089488 —0.39877 0.65595  0.09629  0.03% 0.20864 0.24806 047000 —0.02345 0.16358
0.089300 —0.39913 0.65594  0.09636 0.03 0.20868 025384 046000 —0.02584 0.16394
0.088997 —0.39962  0.65609  0.09648  0.02 0.20888 025945  0.45000  —0.02820 0.16436
0.088815 —0.39983  0.65634  0.09654 0.0l 0.20925 0.26489  0.44000 —0.03053 0.16486
0.088771 —~0.39984 0.65647  0.09656  0.005 0.0978 027018 043000 003284 0.16541
0.088755 —~0.39979 0.65661 0.09655 0.0 0.21000 027180 0.42333 —0.03360 0.16362
0.21227 0.28510  0.40000 —0.03962 0.16746
Above the gap 0.22980 032509  0.30000 —0.06088 0.17816
1.0 ~0.76695  1.04749 0.23728 023978 0.26113 0.34936 0.20000 —0.08057 0.19438
0.8 —0.59054  0.99583 0.20108  0.29928 0.30994 035036 0.10000  —0.09881 021832
0.6 —~0.38957  0.92721 0.15770  0.21593 0.34667 0.33137  0.05000 —0.10678 0.23607
0.5 —~0.27616  (.88131 0.13161  0.20750 0.38003 0.29904  0.02000 —0.10988 0.25320
0.4 —~0.14966  0.82068 0.10059 0.19712 0.39740 0.27530  0.01000 —0.10953 026304
0.3 0.00020  0.72849 0.06017 0.18347 0.41033 0.2537¢  0.00500 —0.10811 0.27113
0.21728 0.18967  0.55 —~0.00020  0.16846 —
0.21069 0.22654  0.50 -0.01406 0.16788
0.20913 0.25830 045 ~0.02699  0.16508
g%}égg g%gggg g;ﬁ; :ggggég gi;?sg the gap is largely independent of the values of the
0.27888 0.32783  0.30 —~0.06167 0.18272 Prandtl number, over the range 10.6-12.6. Just out-
0.24268 0.34288  0.25 ~0.07223 0.19035  side the gap, on each side, multiple solutions are found
g%g?ég gggééé g?g “'gggg?g gé?ggg for each of the six ¢, Pr conditions.
0.30044 035426 0.10 010145 022398 The range of R over which multiple solutions are

0.34661 0.33429  0.05 ~0.10963  0.24228 f‘gund is extr«;mely narrow belt?v{ the gap and much
_______ wider above, just as in [15]. This is seen in the tables.
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Table 3. Conditions, R, and results for solutions below and  Table 4. Conditions, R, and results for solutions below and
above the gap, for ¢ = 1.894816 and Pr = 12.6

above the gap, for ¢ = 1.58295 and Pr = 10.6

R PO —¢(0) FAU) i) R PO —¢'{0) P Jieo)
Below the gap Below the gap
0.0 —0.45456  0.82091 0.11708  0.15010 0.0 —0.51021  0.83668  0.14091  0.17315
0.02 —-0.43582 0.80017  0.11118  0.14281 0.02 —0.49008 081187 0.13308  0.16128
0.04 —041724 077646 0.10504  0.13380 0.04 —0.46953 078292 0.12478  (.14695
0.06 —0.39937 0.74869  0.09871  0.12171 0.05 —0.45958 0.76644  0.12053  (.13785
0.07 —0.39105  0.73251 0.09551  0.11337 0.06 —0.45026 074795  0.11625  0.12608
0.08 —0.38364 0.71376  0.09232  0.10151 0.07 ~0.44246 072585  0.11201  0.10784
0.09 —0.37918 0.68846  0.08933  0.07528 0.072454 —044113 071925 0.1105% 010
0.090698 —0.37941 0.68562  0.08917 0.07 0.074609 —0.44053 0.71244  0.11013  0.09
0.091306 —0.38031 0.68181 0.08908  0.06 0.075780 —0.44086  0.70758 0.10970  0.08
0.091357 —0.38088 0.68055 0.08911  0.055 0.076084 —0.44125 070579  0.10960 0.075
0.091296 —0.38147 067964  0.08917 005 0.076245 —0.44174 070436  0.10957 007
0.091148 —0.38205 0.67902  0.08925  0.043 0.076288 —0.44209 0.70325 0.10958  0.065
0.090975 —0.38259 0.67862  0.08934 0.04 0.076243 —0.44287 070243 0.10962 0.06
0090575 —0.38349 0.6782%  0.08951 0.03 0.076134 —0.44344 0.70184  0.10969 0.055
0.090235 —038409 067834 0.08963 0.02 0.075982 044400 070145 0.10977 005
0.090013 —0.38440 0.67853 0.08571 0401 0.075631 —0.444%6 070109  0.109%4 0.04
0.089949 —0.38445 0.67865 0.08973  0.005 0.075306 —0.44566 0.70110  0.11009 0.03
0.089915 —0.38445 0.67878 0.08974 00 0.075074 —0.44606 0.70128 0.11019  0.02
0.074953  —0.44618 070152  0.11024  0.01
Above the gap 0.074933 044615 070165  0.11025  0.005
1.0 —0.73662  1.08904 022244  0.22640 0.074938 —044607 070179 011024 0.0
0.8 —0.56710  1.03537 0.18855 0.21648
0.6 —0.37398  0.96411 0.14795  0.20386 Above the gap
0.5 —0.26500  0.91647 0.12355  0.19589 1.0 —0.72663  1.0224 0.22317 0.23268
0.4 —0.14346  0.85337 0.09454  0.18608 0.8 —0.59680  0.98826 0.19898 0.22593
0.3 0.00056  0.75810 0.05678 0.17316 0.6 —-0.41972  0.93938 0.16542  0.21705
0.26143 0.06923 0.7 0.03699 0.16686 0.5 —0.30964  0.90388 0.14279  0.21120
0.22261 0.16241 0.6 0.00744 0.15980 0.4 —0.18104 0.85398 0.11380 0.20368
0.21316 0.19971  0.55 ~-0.00561 0.15839 0.2 0.23146  0.55164  —0.00698 0.17832
0.20874 023208 05 —0.01776 0.13853 0.19631 0.26868 0.50 -0.02166 0.17886
0.20877 0.26018 0.45 ~0.02916 0.16023 0.196%94 0.29973 045 ~0.03493  (.18094
0.21265 0.28447 04 —0.03995  0.16345 0.20138 0.32614 040 —~0.04736 0.18449
0.23067 0.32250 0.3 —-0.06012 0.17411 0.22019 0.36662  0.30 -0.07031  0.19567
0.26201 0.34569 0.2 —0.07890 0.19018 0.25217 0.38966 020 -0.09121 0.21209
0.31041 0.34672 0.1 —0.09642 0.21328 0.30160 0.38675  0.10 —-0.11007 0.23544
0.34674 0.32857 005 —0.10419  0.23055 0.33900 0.36365 0.05 —0.11798 0.25286

Only two branches, that is, two sclutions were
obtained above the gap, for all six conditions of ¢ and
FPr. There were also two solutions for each R just
below the gap. However, for ¢ = 1.58295 and
Pr = 10.6, a third solution also arose. This effect is
seen in the R column in Table 4, However, the third
solution was found only over an extremely narrow
range of R. For this solution, the extrainment velocity
F{oo)is very low, less than 0.005.

A significant difference between the sets of solutions
below and above the gap is seen, for example, in Table
1 and Fig. 3. On the figure, the direction of calculation,
down from R = 1/2, is indicated by the arrows on the
curves. That is, calculations proceeded in from R = 1
along the upper branch of the —¢’(0) curve shown.
It is seen that as — ¢"{0) continues {o decrease, second
solution arises at the nose. The motion pressure P(x)
increases to become positive at the surface. That is,
P(0) > 0. The distributions of P(x) across the boun-
dary region, plotted in Fig. 7, show this effect. This
is a result of the larger entrainment rate for these
solutions, as indicated by the increasing entrainment

velocity f(oo) seen in Table 1. For the weaker flows,
below the gap, P(0) is always negative.

As an example of the effects of buoyancy force
reversals in the range 0 < R < 1/2, on flow and mul-
tiple solutions, Figs. 2-11 are given. They are all for
the particular condition g = 1.894816, Pr = 11.6. This
applies for pure water at 1 atm, at low temperature
levels. Figures 2 and 3 show the variation of —¢’(0),
f(o0), £7(0) and P(0) in the regions of multiple solu-
tions both above and below the gap. On the other
hand, Figs. 4-11 show the distributions of principal
transport quantities locally across the boundary region,
for several values of R. These quantities are : W{(y), the
buoyancy force ; ¢(n), the temperature ; &'(z), its slope ;
f'(m), the tangential velocity component u; f"(r), its
slope; P(y), the motion pressure; 3 (n)—207 (), the
normal component of velocity v; and £(x), the stream-
function, which becomes f(c0), the entrainment.

These distributions are shown for four representative
pairs of multiple solutions, each pair at essentially the
same value of R. Two pairs are below the gap, where
the buoyancy force W is largely upward. They are at
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Table 5. Conditions, R, and results for solutions below and

I. Ei-HeNawy et al.

above the gap, for ¢ = 1.58295 and Pr=11.6

Table 6. Conditions, R, and results for solutions below and
above the gap, for ¢ = 1.58295 and Pr = 12.6

R PO) -4 O f(o) R PO)  —¢©® O f(o)
Below the gap Below the gap
0.0 —0.49986 085365  0.13608 0.16814 0.0 —0.49061 0.86946  0.13180 0.16369
0.02 —0.48019  0.82831 0.12849  0.15700 0.02 —-0.47134  0.84361 0.12442  0.15262
0.04 —0.46009 0.79874  0.12045  0.14290 0.04 —045165 0.81347  0.11661  0.13928
0.06 —0.44124  0.76308  0.11204 (.12294 0.06 —0.43317 077716  0.10858  0.12010
0.07 —0.43354  0.74068 0.10806  0.10559 0.07 —0.42557 - 0.75445  0.10457  0.10370
0.072069 —0.43236 0.73516  0.10723  0.10 0.073243  —0.42383  0.74552 0.10329  0.095
0.074669 —0.43141 0.72722 0.10620 0.09 0.075621 042319 0.73770  0.10240 0.085
0.076141 —0.43154 072149  0.10566 0.08 0077216 —042399 073015  0.10185 0.070
0.076789 —0.43235 0.71763  0.10546 0.07 0.077381 —0.42451 0.72855 0.10181  0.065
0.076893 —0.43288  0.71628 0.10544  0.065 0.077421 —-0.42510 072732 0.10183  0.060
0.076889 —0.43347 0.71525  0.10547 0.06 0.077368 —042570 0.72640  0.10187  0.055
0.076805 —0.43406 0.71450  0.10553  0.05S 0.077245 —0.42629 0.72576  0.10194  0.050
0.076670 —0.43463  0.71399 0.10560  0.05 0.076912 —-0.42737 0.72506  0.10210  0.040
0.076325 —0.43565 0.71347 0.10577 0.04 0.076565 —0.42818 0.72490  0.10226  0.030
0.075988 —0.43641 071339  0.10592 0.03 0.076296 —~0.42869 0.72499  0.10237 0.020
0075736 —0.43687 0.71353  0.10603 0.02 0.076138 —0.42892 0.72519  0.10243  0.010
0.075597 —0.43705 0.71375 0.10608  0.01 0.076100 —0.42893 0.72530  0.10244  0.005
0.075568 —0.43704 0.71387 0.10610  0.005 0.076089 —0.42889  0.72543 0.10245 0.0
0.075564 —0.43698 (0.71406  0.10609 00
Above the gap
Above the gap 1.0 ~0.69797  1.06289 0.20918 0.21971
1.0 —~0.71150  1.04336 0.21576 0.22580 0.8 —0.57319  1.02745 0.18654 0.21332
0.8 ~0.58433  1.00855 0.19240 0.21924 0.6 —0.40297 097672 0.15517  0.20493
0.6 —0.41088 095872 0.16000 0.21062 0.5 —0.29716  0.93990 0.13401 0.19940
0.4 ~0.17709  0.87168 0.11027 0.19764 0.3 —0.02316  0.80565 0.06997 0.18239
0.2 0.22536  0.56639 0.00570 0.17294 0.2 0.22003  0.57996  —0.00467 0.16818
0.19811 0.23761  0.55 -0.01028 0.17291 0.19524 027282  0.50 —0.02500 0.16925
0.19561 027116  0.50 ~0.02353  0.17375 0.19717 0.30029 045 —0.03671 0.17169
0.19701 0.30018 045 ~0.03594 0.17602 0.20243 0.32389 040 —0.04776 0.17542
0.20190 0.32508 040 ~0.04762  0.17967 0.22204 0.36029  0.30 —0.06831 0.18641
0.20998 034613 035 ~0.05871 0.18461 0.25394 038124 020 —0.08724 0.20208
0.22114 0.36337  0.30 -0.06929 0.19077 0.30248 0.37875  0.10 —0.10462 0.22415
0.25309 0.38528  0.20 -~0.08913  0,20679 0.33901 0.35776  0.05 —0.11217  0.24061
0.30296 0.38261  0.01 ~0.10721  0.22947
0.33900 0.36065 0.05 —0.11493  0.24638

R = 0.089423 and 0.090822. The second value is very
near the lower boundary of the gap. The two pairs
above the gap, largely downward W, are at R = (.38
and 0.21. The second value is near the upper boundary
of the gap. The last two pairs are very far apart, com-
pared with the pair below the gap. Both of the second
values above are near the two noses of the bifurcation
diagrams in Figs. 2 and 3. The two separate solutions
for each of the four pairs chosen are labelled on Figs.
4-11 as u for upper branch and / for lower branch. The
upper branch, on each side of the gap, are the first
solutions, coming toward the gap from R =0 and
R = 1/2, respectively. This is apparent in Figs. 2 and
3. Above the gap, the upper branch solutions are
more vigorous transport, at higher —¢’(0).

Figures 4-11 indicate substantial differences
between the two solutions at each of the four values
of R. The distribution corresponding to R = 0.38,/
stands out from the rest in each figure. It has the
lowest —¢’(0), in Fig. 9, and most extreme maxi-
mum and minimum values of tangential and normal
components of dimensionless velocity, f’(n) and
3fm)—2n1"(n), in Figs. 6 and 11. In all of these

figures, the four negative buoyancy force solutions, at
R =0.21 and R = 0.38, are easily distinguished from
each other. They are also very different for the other
solutions. However, the four solutions below the gap
cannot be readily distinguished from each other at the
scale at which Figures 4, 5, 7 and 9 are drawn.

The distributions of W(n,R) vs # illustrate this
difference. Those at R = 0.21 and R = 0.38, both u
and /, steadily decrease to a negative minimum as #
increases outward. The v and / curves in each pair
have essentially the same value at their minima. The
lower solutions reach their minimum nearer the sur-
face than do the upper solutions. The curve for
R =0.38,/ has its negative minimum, about —0.16,
at n# =~ 2.8. The distributions of W(#,R) vs 5 for the
other side of the gap all descend to a much larger
negative minimum and rise slowly to 0 as x increases
10 7 ,-

The ¢(n) distributions shown in Fig. 5 have the
same qualitative behavior. They descend according to
equations {13) and (16), from ¢(0) = 1 strictly mono-
tonically, to 0. The results below the gap are again
essentially indistinguishable from each other. The
R = 0.38, curve has by far the slowest initial descent.
The curve for R = 0.38,u descends most rapidly.
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F1G. 4. The buoyancy force distribution W(n) across the
thermal boundary layer for an isothermal surface, Pr = 11.6,
and ¢ = 1.894816. In the lower and upper regions of R of
multiple solutions, the upper and lower branch solutions
are shown as u and / for the conditions (a)-(d) below. (a)
R = 0.089; where f(c0) =0.077 and 0.006, essentially the
same result on both branches. (b) R=0.091; where
f(0) =0.060 and 0.055. (c) R =0.38; where —¢’(0) =
0.822 and 0.020. (d) R=0.21; where —¢’(0) = 0.507
and 0.423.

gly)

.17

0

~0.00

.00 2.00

F1G. 5. The temperature distribution ¢ () for the same con-
ditions as in Fig. 4. The fourth through the seventh curves
are essentially the same.
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Fi1G. 6. The distribution of the tangential velocity component
f7(n) for the same conditions as in Fig. 4.

Some of the solutions above the gap have major
reversals in the tangential velocity profiles (see Fig.
6). Most notable is the very highly bidirectional flow,
for R = 0.38,1. This results from the very large reversal
of W(n) seenin Fig. 4. On the other hand, the solutions
below the gap show, at most, slight outside reversals,
for R = 0.89423,/ and 0.90822,/. The outside reversals
first occur at f(c0) = 0.05 as f(co0) decreases from
0.8. These reversals become stronger as f(o0) de-
creases from 0.05 to 0. These solutions correspond
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Fi1G. 7. The pressure distribution P() for the same condition
asin Fig. 4. The values for R = 0.089 and 0.091 are essentially
the same.
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FiG. 8. The streamfunction distribution f(y), where f{co) is the entrainment velocity, for the same
conditions as in Fig. 4.

to points below the nose of the f(co) curve in Fig. 2.
This behavior contrasts with that for flow adjacent to
a vertical isothermal surface. Then the corresponding
outside reversals in f” first occur for values of f(o0)
above the nose in the analogous bifurcation diagram.
For the solutions below the gap, P(0) is always nega-
tive for all solutions. See Tables 1-6.
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FIG. 9. The slope of the temperature distribution, ¢’(%), for
the same conditions as in Fig. 4.

In the region above the gap, some but not all of the
new solutions found have inside tangential velocity
reversals, that is, in f’(y¢). These first occur at
—¢'(0) = 0.557, for R=10.21, as —¢’(0) decreases
from 1.0690 at R = 1.0. These reversals arise above
the nose of — ¢’(0) in the bifurcation diagram, Fig. 3,
just as for vertical flows, see El-Henawy et al. [15].
However, here these reversals occur later, that is,
closer to the nose. None of the solutions found by
Gebhart ef of. [10] had inside reversals. Further, for
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Fii. 10. The distribution of the shear stress parameter /(1)
for the same conditions as in Fig. 4.
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Fig. 11. The distribution of the normal component of
velocity, 3/ —2nf", for the same conditions as in Fig. 4.

the same value of —¢@’(0) as in vertical flows, the
inside reversals are stronger. For example, here, at
¢’(0) = 0.02 for R = 0.38

min f'(n) = f'(0.9278) = —0.0594 for 5= 50.
'+ o

For vertical flows, for the same values of ¢ and Pr, at
—¢’(0) = 0.02 for R = 0.43060

min /'(r) = /(0.8991) = 0.0511 for ., = 100.
Y o

For these same solutions, for horizontal flow we have

min /() = /(1.8194) = ~0.0623
o

while for the vertical flow

min /() = /(1.8297) = —0.0620.
o,

Again considering the solutions above the gap, it is
seen that, as solutions march down the bifunction
curve, of —¢'(0) vs R in Fig. 3, P(0) increases mono-
tonically upward toward zero. It becomes positive
slightly before f”(0) changes sign. It continues to
increase as — ¢’(0) decreases further. Continuing cal-
culations do result in P{0) again decreasing. The dis-
tributions of P(y) are shown in Fig. 7. For both
R = 0.21 and 0.38, both the upper and lower solutions
have reversals. Those for R = (.38 are about twice
those for R = 0.21.

The streamfunction distributions, f{(») in Fig. 8, are
all readily distinguished from each other. Again
R = 0.38,/ stands out from the rest. It has the deepest
negative minimum and the largest value of f(o0).
For the gradient —¢’(0) in Fig. 9 all the curves for
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conditions above the gap may be distinguished from
each other. The largest magnitude of ¢'(0) is for
R =0.38,u. The smallest is for R = 0.38,/—a very
weak flow. All of the other conditions result in inter-
mediate values.

The distributions f"(n) are seen in Fig. 10. The
most notable one is again that for R = 0.38,/. There
is a large negative value of f"(0). This follows again
from the large inside reversal of W(y) seen in Fig. 4.
That leads to the low heat transfer rate, seen as — ¢'(0)
in Fig. 3. A similar tendency is seen in Fig. 10, at
R = 0.21. This effect, and the flow reversals seen in
Fig. 6, would perhaps have very destabilizing effects
on such flows. Multiple inflection points arise. There
are also two points of inflection for the solutions
below the gap, with corresponding implications of
instability., That the flow reversals of f*, both inside
and outside, occur later for these horizontal flows,
than for vertical flows, suggests that comparable hori-
zontal flows may be more stable.

Figure 11 shows the distributions of the normal
component of velocity, », which is proportional to
3f’—2n/. The very different behavior for R = .38,/
again results from the major reversals of W(x) and of
uoc f'(n). The large tangential flow effects generate
large gradients in the cross-stream component. Some
of this same effect is also seen for R = 0.21. The weak
and more uni-directional flows below the gap do not
show these characteristics.

SUMMARY

Previous calculations of horizontal flow in cold
water clarified transport generally over a wide range
of R. The two limiting results given in the range
0 < R < 1/2 in ref. [10] indicate that buoyancy force
reversals there soon result in diminished heat transfer
and shear stress, —¢’(0) and f"(0).

The above calculations examined such questions in
much greater depth and detail. The gap in the solu-
tions was significantly narrowed and its extent deter-
mined. Multiple solutions arose in the regions at each
edge. Transport immediately below the gap is weak,
for all solutions, because of the outside force buoy-
ancy reversal. However, the two sets of multiple so-
lutions above the gap have very different charac-
teristics from each other. The buoyancy force reversal
is then inside. The upper branch results show a vigor-
ous, relatively high heat transfer rate flow. The lower
branch results give much lower heat transfer. The flow
then results from a more detailed inter-play of the
flow, pressure and viscous effects.

The multiple solutions arise, coming in toward the
gap on both sides, in conjunction with the increasingly
large buoyancy force reversal across the thermal layer.
Multiple responses to this reversal eventually satisfy
the governing equations, in these narrow ranges. It
is not now known why and how increasingly severe
reversals preclude further solutions. Nevertheless, the
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smooth turning back of the solution curves at both
edges of the gap, in Figs. 2 and 3, strongly suggest
that there are no other solutions just inside those
regions.

The second solutions found for vertical flows, by
El-Henawy et al. [15], have been analyzed for their
stability by El-Henawy et al. [19]. All such flows were
found to be unstable. This would be expected also for
the lower branch solutions given here.
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SOLUTIONS PERMANENTES MULTIPLES POUR DES ECOULEMENTS
HORIZONTAUX AVEC GRAVITE

Résumné—La force d’Archiméde qui résulte des gradients de température dans I'eau froide est bidi-
rectionnelle si le domaine de température couvre l'extremum de densité. Plusieurs conséquences de grande
échelle ou non sont connues maintenant, pour quelques configurations parmi les plus courantes, Les
premiers calculs pour les écoulements horizontaux laissent un large domaine de conditions pour lesquelles
on n’obtient pas des solutions de couche limite. Des résultats présents rétrécissent considérablement ce
domaine. lls déterminent aussi avec précision le fossé résiduel sans solution en fonction d’un paramétre de
densité extrémale R. Ces calculs trouvent des solutions multiples dans des domaines de R de chaque coté
de ce fossé. Dans quelques régions, les propriétés du second gystéme de solutions sont trés differentes et
inhabituelles, parmi les écoulements induits par gravité. De trés faibles écoulements sont trouvés qui,
néanmoins, peuvent 8ire trés instables. Des transferts thermiques extrémement reduits apparaissent dans
ces gonditions,



Horizontal buoyant flows in cold water

MEHRFACHE STATIONARE LOSUNGEN FUR WAAGERECHTE
AUFTRIEBSINDUZIERTE STROMUNGEN IN KALTEM WASSER

Zusammenfassung—Die Auftriebskraft aufgrund von Temperaturunterschieden im kalten Wasser kann
zwei entgegengesetzte Richtungen besitzen, wenn der Temperaturbereich das Dichtemaximum einschlieBt.
Viele Auswirkungen dieses Phidnomens—im GroBen wie im Kleinen—auf einige der ge-
briuchlichsten Strémungsanordnungen sind bekannt. Erste Berechnungen von horizontalen Strémungen
zeigten, daB sich fiir einen weiten Bereich keine Grenzschichtldsungen ergeben. Die Ergebnisse, von denen
hier berichtet wird, engen diesen Bereich erheblich ein. Sie bestimmen auch exakt das Residuum, fiir das
keine Lésungen existieren, mit Hilfe eines Parameters R fiir das Dichtemaximum. Interessant ist weiter,
daB Mehrfachlésungen auf beiden Seiten des Residuums gefunden wurden, und zwar iiber ganze Bereiche
von R. In einigen Bereichen sind die Eigenschaften der Zweitlosungen sehr verschieden und ungewdhnlich
fir thermische Auftriebsstromungen. Sehr schwache Stromungen wurden festgestellt, die dennoch sehr
instabil sein kénnen. Unter gewissen Bedingungen wird der Wirmeiibergang sehr schlecht.

MHOXECTBO CTALIMOHAPHBIX PEIIEHUN JJ1S1 TOPU3OHTAJIBHBIX [TOJABEMHbBIX
TEYEHUN B XOJIONHOW BOJE

Annorauus—IloabeMHas cuna, BO3HMKalOLIas M3-3a NepenafoB TEMIEPATYp B XOJOAHOH Boae, UMeeT
JIBa HATIPABJICHHS B TOM CJIytae, €CJIH AMANA30H TEMNEPATYp BKJIIOYAET IKCTPEMAIbHOE 3HAUCHHE [LIOT-
HOCTH, B HacTosIIee BpeMs H3BeCTHO GOJIBILIOE YHUC/IO MACIUTAGHBIX H TOHKHX CIIEACTBHI 3TOrO ABJCHUS
[T HEKOTOPbIX Haubosiee M3BeCTHBIX GOPM TeueHUs. B mepBbIX pacueTax TOPU3OHTAJBHBIX TEYEHHH
Obl1 BbISBJIEH IUAPOKUN JMANA30H YCIOBUH, A/ KOTOPBIX pELLEHHsS NOrPaHHUYHOrO /10 He ObLAM NoJty-
yennl. [TosydyeHHble B HacTOAWEH paboTe pe3ybTaThl 3HAYMTENBHO CYXKAIOT ITOT AuanaloH. OHH TaKkxe
TOYHO ONpPEJEsIAIOT TOT OCTATO4HBIA NPOMEXYTOK, B KOTOPOM pELIEHHS OTCYTCTBYIOT, Yepe3 nmapaMeTp
3xkcTpeMyMa utoTHocTH S. Takoil *e HHTepec npeacTapaseT TOT ¢GaKT, YTO ¢ IOMOLLUBIO 3THX PAcCYETOB
oOHapyXeHO OTCYTCTBHE €AMHCTBCHHOCTH pelIeHHMs 3a mpeaesiaMH AHanasoHa S mo kaxaoyro CTOpOHY
npomexyTka. B HekoTopbIx o6nacTax cBoiicTBa BToporo Habopa pellieHHi HEOOBIMHBI M OY€Hb CHJIBHO
OTJMYAIOTCA OT APYSUX TEYEHHH, BbI3BaHHBIX MoabeMHON cunoii. Haiinensr ouenb cnalble TeyeHus,
KOTOpBIE, TEM HE MeHee, MOTYT ObITe HeycTOH4YMBBIMH. HEKOTOPBIM YCIIOBHAM COOTBETCTBYIOT OYEHb
Masible K03hdHUNEHTHI TEIIonepeHoca.
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