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Abstract-The buoyancy force arising from temperature gradients in cold water is bidirectional if the 
temperature range spans that of the density extremum. Many large scale and subtle consequences of this 
are now known, for some of the most common flow configurations. The first calculations for horizontal 
flows encountered a wide range of conditions for which boundary-layer solutions were not obtained. 
Results here narrow that range considerably. They also accurately determine the residual gap of no 
solutions, in terms of a density extremum parameter R. Of equal interest, these calculations have found 
multiple solutions over ranges of R, on each side of the gap. In some regions, the properties of the second 
set of solutions are very different and unusual, among buoyancy induced flows. Very weak flows are found 
which, nevertheless, may be very unstable. Extremely low heat transfer rates arise under some conditions. 

INTRODUCTION 

THE HEAT transfer and flows arising from buoyant 

fluids adjacent to horizontal or nearly horizontal sur- 
faces have not been studied as extensively as those 
adjacent to vertical surfaces and in freely rising 
plumes, However, these flows arise in many appli- 
cations, both in the environment and in technology. 
The flows of concern here are those adjacent to a 
horizontal surface, in an extensive ambient medium, 
as a result of a surface temperature different from that 
of the ambient medium. Past observations of flows 
arising from isolated surfaces have shown the exist- 
ence, close to the surface, of a boundary-layer mode 
of convection, followed, after a region of instability, 
by a cellular motion. Schmidt [l] was apparently the 
first to investigate ex~rimentally flow above a flat, 
horizontal surface. 

With only thermal buoyancy effects, and the usual 
approximations concerning density levels and differ- 
ences, often called the Boussinesq or conventional 
approximations, Stewartson [2] analyzed transport 
adjacent to a semi-infinite isothermal surface. The 
flow was assumed to arise downstream from a single 
leading edge. Gill et al. [3] later showed that the 
necessary condition for such flows was that the buoy- 
ancy force be away from the surface, as for a heated 
surface facing upward or a cooled surface facing 
downward. 

Rotem and Claassen [4, 51 obtained solutions for 
an isothermal horizontal surface for several specific 
values of the Prandtl number. Asymptotic results for 
zero and infinite Prandtl numbers are also given in 
ref. 141. Ex~~mental observations with a schlieren 
system clearly indicated the existence of a boundary 

layer near the leading edge on the upper side of a 
heated horizontat surface, insulated on the bottom 
face. Rotem [6] and Rotem and Claassen [4] also for- 
mulated the similarity solution for horizontal axisym- 
metric boundary-layer flow adjacent to an unbounded 
horizontal surface and gave solutions for an iso- 
thermal surface condition for an unspecified Prandtl 
number. These are sometimes called disk flows, in 
contrast to the plane flows previously considered. 

Pera and Gebhart [7, 81 studied both flow and the 
stability of horizontal and slightly inclined plane 
flows. For a horizontal orientation, the experimental 
results in air indicated an attached region, with 
characteristics close to those predicted. This region 
was followed downstream by a flow separation in the 
form of very rapidly growing longitudinal vortices. 
This latter consequence, along with upstream dis- 
turbance growth characte~stics, implied an initiating 
role for upstream two-dimensional spanwise dis- 
turbances. 

For the disk flows studied in refs. [4, 61, Blanc 
and Gebhart [9] discuss the limits of physical reason- 
ableness of a downstream variation of to-t,, i.e. 
the difference between the local surface and ambient 
medium temperatures. Solutions are given for both 
isothermal and uniform flux conditions, for t, uni- 
form. Then procedures are presented which give exact 
solutions of some disk and plane flows, 

The present paper treats horizontal plane flows, 
generated in both pure and saline water, at tem- 
perature conditions which may result in density 
extrema in the convection region, e.g. at about 4°C at 
a pressure of 1 bar in pure water. Such flows are found 
in the melting and freezing of ice surfaces and in 
processing technology. 
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NOMENCLATURE 

a, b, c defined in equations (9), (17) and (18) w non~mensional local buoyancy force 
B buoyancy force, g(p, -p) x distance along the surface 

CP specific heat of water I’ distance normal to the surface. 

f nondimensional streamfunction 
G modified Grashof number, S(GrJ5)“’ Greek symbols 

Gr, Grashof number 

; 

coefficient in density equation (2) 

.4 acceleration due to gravity coefficient of thermal expansion 
k thermal conductivity ? nondimensional distance in the boundary 
P nondimensional motion pressure region 
Pr Prandtl number 9 x, value of q at the outside edge of the region 

Pm motion pressure of calculation 

4 exponent in density equation (2) V kinematic viscosity 
R (Ln-tm)l(to--co) P density 
s salinity Pm maximum density 
t temperature Pm density of ambient fluid 

tlri temperature where the density is 4 nondimensional temperature, 
maximum (r-t,)/(to-tr) 

IO surface temperature 3/ streamfunction. 
t rr ambient temperature 
u tangential velocity component Superscript 
1) normal velocity component differentiation with respect to II. 

These were first studied by Gebhart ef al. [IO], for is upward near the surface, with an outside region of 
both plane and disk flows, using a formulation for 
transport similar to that given by Gebhart and Mol- 
lendorf [ 111 for vertical flows. Buoyancy-driven trans- 
port may be, relatively, very complicated when the 
imposed temperature conditions, lo and t=, are low, 
in the region of the density extremum, at t,. If t, and 
t, span t,, a buoyancy force reversal arises across the 
thermal layer, all the way downstream in the fluid. If 
this is sufficiently severe, flow reversal may be gen- 
erated across the transport region. This tendency, in 
turn, may lead to complete reversal of the overall Sow 
patterns. This is called convective inversion. 

buoyancy force reversal, to downward. This is the 
range of R just above R = 0. For choice 4, B is 
downward near the surface and upward further out. 
This is the region below R = l/2. Inte~ediate in the 
range 0 < R < l/2, the opposing effects are com- 
parable. For choices 3 and 4, local flow reversals arise. 
Then the net flow direction is unclear. It is in this 
region that a gap arises in solutions of the boundary 

These effects, in terms of the local buoyancy force, 
B = g(p, -p) are depicted in Fig. 1. The density vs 
temperature variation sketched in Fig. l(a) shows 
four typical choices (1,2,3 and 4) of the imposed tem- 
perature conditions t, and t,, in relation to the 
temperature at the extremum, t,. These three tem- 
peratures are related as follows : 

t,,(%p)-t, 
R=-=--. 

II u_ 

The four choices in Fig. 1 represent the four regimes 
of buoyancy force variation, B = g(p, -p), which 
arise with an extremum. These regimes are shown, 
over the range of R in Fig. l(b). For choice 1, B is 
everywhere upward, or positive, across the thermal 
region and R < 0. For 2, B is everywhere downward. 
This condition persists for al1 larger values of tc,l until 
p(t”,J = ~(t & for a symmetric density variation. 
This is the region R 2 l/2. For 3, the buoyancy force 

layer formulation. 
The calculations of Gebhart and Mollendorf [ 111, 

for flows adjacent to vertical isothermal surfaces, 
cover the ranges of unidirectional buoyancy force, 
that is, outside of 0 i R < l/2. Both pure and saline 
water were considered. 

The formulation of the local buoyancy force, 
B = g&--p), used the very simple, yet very accurate, 
density relation for pure and saline water developed 
by Gebhart and Mollendorf [ 121, given below in equa- 
tion (2). It applies to water in the range of t = 0 to 
20°C salinity s = 0 to 40 p.p.t, and pressurep to 1000 
bar. The agreement with the most modern density 
data over this whole region is about 9 p.p.m. (r.m.s.). 
The agreement with other modern pure water results 
is 3.5 p.p.m. (r.m.s.). The relation is 

p(t,s.p) = P,(S,P) ll -&P) lt-fInhw~~~F)l (2) 
where p,(s,p) is the maximum density at s and p, 
t&p) is the corresponding inversion temperature at 
maximum density and q&p) is the exponent. For pure 
water at 1 bar, q = 1.894816, a = 9.297173 x 10m6 
(CAq and t, = 4.029325”C. Equation (2) contains 
only a single term in temperature. This simplicity is 
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extremely important in analysis of t~e~ally driven 
flows in both pure and saline water at low tem- 
peratures. 

The ~al~u~atio~s in ref. [l I] used a numerical shoot- 
ing method whkh was very sensitive to buoyancy 
force reversals. No solutions were obtained for these 
conditions. These reversals tend toward flow reversal 
across the boundary region. Carey et al. [I 31, refining 
the numerical method used in ref. [II], found 
additional regions of solutions in from both edges of 
the range 0 < R < l/2. However, a gap in the solu- 
tions remained, about 0.152 < R < 0.292, for pure 
water and Pr = 11.6. The edges of the gap again arose 
from the tendency to flow reversal, outside reversal at 
the lower boundary of the gap and inside at the upper. 
The gap arises as the net buoyancy force decreases. 
These ~~~uIatio~s indicated rapid transport par- 
ameter variations at both edges toward the gap. The 
shouting method was not suitable for further progress. 
The ejaculations of W&on and Lee [14] also indicated 
a gap in R where no steady-state solutions, of the fuil 
equations, could be found. 

Horizontal plane flows are subject to the same com- 
plexity demonstrated in Fig. 1 and discussed above. 
fn addition, major effects are mediated by the motion 
pressure field which arises. Reversals of B again occur 
in the range 0 < R K l/2, for an is~the~al surface. 
The calculations in ref. [lo] for pure water, referred 
to above, encountered a gap, as the net buoyancy 
began to rapidly decrease, toting in on both sides. 
With the shooting method used, the residual gap was 
0.080 < R < 0.30t, for pure water, 

El-Henawy e# al. [ 151 then used a fixed interval, 
adaptive orthogonal collocation, computer code 
CQLSYS, by Ascher et al. [16] and the multiplc- 
shooting code, BOUNDS. See Bulirsch and Stoer [I 71 
and Deuflhard (l&I. Further solutions were found, 
Calculations came to the gap on both sides and 
sharply defined its extent. The results were ranges 
in .R, of rnu~t~~le steady-state solutions. That is, for 
some values of R. there were several solutions. These 

these solutions, concerning instabiii~~ and transition, 
are important. 

The results in the present calculations were obtained 
for fixed interval calculations using the code 
COLSYS. The calculations were made for Pr = 10.6, 
1 I.6 and 12.6, for each of the extreme values of 
&,p) = 1.897816 and 1.58295 in the density &a- 
tion in equation (2). These apply in pure water: 
at 1 bar and to water of high salinity at high pres- 
sure. Again, the gap was narrowed, this time 
to O.a9~836 < I( -X 0.20864? far 4 = 1.897816 and 
2% = 1 I.& MultipIe solutions were found at both 
edges of the gap. The following section sets forth the 
formulation of the boundary value problem, in terms 
of similarity variables. Then the results and con- 
clusions are given, 

solutions were often very different from each other, Since the density changes in cold water are very 
in terms of the flow and other transport character- small, even compared to those in many other liquids, 
istics. The gap of no solutions was reduced to the uniform density continuity equation applies. 
0.1538 < R -=I 0.2918. The impfications of some of However, the buoyancy force 3 = g(p,---p) will be 
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evaluated from equation (2). The horizontal and ver- 
tical for~momentum balances, the temperature and 
continuity equations and the boundary conditions are 
written below, in equations (3)-(7). The distance 
along the surface from its leading edge is x and y 
outward from the surface, in the direction in which 
the net buoyancy force prevails. The motion pressure 
pm, the local difference in pressure from the local ambi- 
ent hydrostatic, is generated by buoyancy in equation 

(4) 

au au a224 1 ap, 
u-+~-_=v~--- 

ax ay a~ P ax 
(3) 

at at k a3 
uiP~=pc,?v’ 

i”+!?=;o 
ax ay 

(5) 

u(x, 0) = v(x, 0) = u(x, 00) = p&x, co) = 0, 

t&O) = to and t(x, co) = t,. 
(7) 

These equations and boundary conditions are at 
the same level of boundary-layer approximations as 
those which arise in ordinary fluids, with the added 
Boussinesq approximation. However, the Grashof 
number, which again characterizes the flow, is defined 
instead in terms of the different density fo~ulation 
necessary here. 

The buoyancy force is determined from (2) at a 
given level of s and p, where c1= cr(s,p), pm = p,(s,p), 

trn = Ms,p) and q = q&p), as 

g(P,--P) = Sap,(lt-t,14-It,-t,lY). (8) 

With the usual streamfunction, the following trans- 
formation is used. 

vl(-%Y) = &+, Icl(X,Y) = vc(x)f(tl) (9) 

Recalling from equation (1) that 

R = G&7?J)--tm ____..- 
t,-t, 

indicate derivatives with respect to 9. 

f”‘_c3f”f - f” +@‘--@J = 0 (13) 

p’= w= 14-Rl”--(R(4 (14) 

9” + 3Fr&f = 0 (15) 

f(0) =f’(O) = I -l$(O) = $(co) =S’(co) 

= P(co) = 0. (16) 

The relevant local Grashof number, the functions 
a(x), h(x) and c(x) in equations (11) and (9) and the 
local Nusselt number are 

Gr, = (gx3/v2)& --~,l~, 

where G = 5(Gr,/5)“s (17) 

a(x) = (5v2p/xz) (G/5)4, b(x) = G/5x 

and c(x) = G (18) 

Nu, = -4’(O) (Gr,/5) “‘. (19) 

The value of Gr, is again the unit value gx3/v2, times 
the nominal units of buoyancy all,-- tJ. However, 
this latter quantity is not a reliable indicator. This is 
seen as follows. The density curve in Fig. 1 applies for 
given values of c1 and q. However, for a given difference 
lo-t, very different density differences pm--p arise, 
depending on the location of to and t,, in relation to 
t,. Recall the regimes shown in Fig. 1 (b). 

The boundary-layer formulation here applies only 
for on-flows at a leading edge. This arises, for B posi- 
tive, for flows on the upper side of a surface. For B 

negative, the formulation applies on the lower side. 

NUMERICAL METHODS 

The two-point boundary-value problem (TPBVP) 
in equations (13)-( 16) has been solved using the For- 
tran code COLSYS. This is a TPBVP solver that is 
based upon adaptive, orthogonal collocation, using 
B-splines [ 161. It was chosen for its accuracy, efficiency 
and reliability. Also, the degree of the polynomials 
employed in the spline approximation to solutions 
may be chosen to avoid potential faculties caused 
by the discontinuity in the second derivative of the 
buoyancy force relation, W in equation (12), which 
arises at d, = R. The computation time required was 
about 12-15 s per solution on a dual CPU Cyber 
730 system. Compilation of the driving programs was 
done under FTN 4.8, Opt. = 2. 

and putting (10) and (1) into (2), we evaluate the To generate families of solutions, two approaches 

buoyancy force W 
were used. The first was simple continuation in the 
parameters R, beginning with a single solution found 

pm--~ = ~~,l~~-f,lY~lrft-~lq-l~lq~ 
(12) 

by using numerical results in ref. [lo]. That solution 

= tl~mlfo-rmlq W(n, R). 
was taken as the initial guess for a second solution 
with R slightly changed. Thereafter, a linear interpo- 

The transformation is introduced into (3)-(7). The lation of two previous solutions was used to generate 
following similarity formulation is obtained, in terms the solution for the next desired value of R. The 
of the stream, pressure and temperature functionsf, P second approach was to add the trivial equation R = 0 

and 4. The parameters Pr, R and q arise. The primes to the system of differential equations, along with 
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Rx10 
FIG. 2. Transport over the range of R just below the region of major reversal effects, up into R conditions 
at which multiple solutions arise. These solutions bound the gap of no known solutions from below. For 

an isothermal surface, Pr = 11.6 and q = 1.894816. 

the boundary condition f (co) = k, when R < 0.1, or these solutions were tested, for sensitivity to q,, near 
instead, -4(O) = k, when R > 0.2. Then simple con- and below the noses, that is, beyond the points of 
tinuation in k generated solutions, when the slope of vertical tangency in bifurcation diagrams, Figs. 2 and 
a bifurcation curve of .f(co), or of -d’(O), vs R, 3. Beyond such noses lie the additional solutions. The 
became large. It was sufficient to determine these so- solutions were unchanged to five significant digits for 
lutions over the interval (0, q,) = 50. To assure this, choices of qm = 100 and q, = 150. 

7 
1 

.I6 
0.21 0.24 0.27 0.30 

! 
0.33 0.36 0.39 0.42 

R 

FIG. 3. Transport over the range of R just above the region of major flow reversal effects, down into R 
conditions at which multiple solutions arise. These solutions bound the gap of no known solutions from 

above. For an isothermal surface, Pr = 11.6 and q = 1.894816. 
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RESULTS 

Solutions were obtained in the range of buoyancy 

force reversals, 0 < R < l/2. These were continued in 
from the two boundatics to the regions of multiple 
solutions. These regions bound, on the two sides, the 
remaining gap in which no solutions were found. 
Each set of solutions, those below and above the 

gap, were obtained for representative values of the two 

parameters q and R which arise in the formulation in 

equations (13)-(16). The values used are 4 = 1 XV816 

and 1.58295, for each value PP = 10.6, 11.6 and 12.6. 

The results for each of these six conditions are given 

in Tables 1-6. For all q and Pr conditions t,he flows 

below the gap resuft from a predominantly upward 

buoyancy force and those above from a pre- 

dominantly downward buoyancy force. 

These results indicate the extent of the gap of no 
solutions for each of the six conditions. For q = 
1.897816 the gap is about 0.09 c: R < 0.21 and for 
q = 1 S8295 it is about 0.08 < R < 0.20. The range of 

Table 2. Conditions, R, and resuIts for solutions below and 
above the gap, for q = 1.894816 and Pr = 11.6 

Below the gap 
0.0 -0.46309 
0.01 -0.45353 
0.02 -0.44396 
0.03 -0.43444 
0.04 -0.42501 
0.05 -0.41576 

0.80604 0.12092 0.15416 
0.79620 0.11792 0.15058 
0.78569 
0.77448 
0.76243 
0.74942 

0.11484 0.14664 
O.lf171 0.14226 
0.10852 0.13733 
0.1052X 0.13163 
0.10200 O.t2480 
O.OQ870 0.11613 
0.09542 0.10368 
0.09414 0.09628 
0.09377 0.09350 
0.09286 0.084~ 
0.09262 0.08000 
0.09254 0.07453 
0.09234 0.0720~ 
0.09226 ~.~6~ 
0.09226 0.06000 
0.09227 0.05800 
0.09229 0.05600 

0.08 -0.39077 
0.084 -0.38830 
0.085 193 -0.38768 
a.088217 -0.38455 
0.089073 -0.38645 
0.089423 -0.38651 
0.0902~3 -0.38670 
~.~90~3 --0.38717 
0.090822 -0.38778 
0.090836 -0.38801 
0.090832 -0.38824 
Q.090822 -0.38533 
O.OQO730 -0.38894 
0.090464 -0.38981 
0.089991 -0.39086 
O.~SQ7~4 -0.39132 
~.OSP466 -0.39167 

0.06 

0.70082 

-0.40678 

0.69218 
0.68936 

0.73518 
0.07 

0.68134 

-0.39830 

0.67866 

0.7 1928 

0.67735 
0.67439 
0.67204 
0.67030 
0.669134 
0.66943 
0.66Q25 
0.66850 

0.09251 0.04200 
0.09272 0.03000 
O.oQZS2 0.02200 
0.0929 1 ~.Ol~O 
0.09292 0.00583 
0.09293 0.00400 
0.09293 

0.09230 

0.~150 

0.05495 

0.09293 

0.09237 

0.001# 

0.05000 
0.66779 
0.66749 
0.66755 
0.66780 

Table 1. Conditions, R, and results for solutions below and 
above the gap, for y = 1.894816 and Pr = 10.6 

-- -___I_ 
R P(O) - CPV) f"(O) f(a) 0.089423 -0.39169 0.66797 

0.089404 -0.39170 0.66795 
Below the gap 

0.0 -0.47260 
0.08939X -0.39169 
O.OS9389 -0.39169 

Above the gap 
1.0 - 0.75093 
0.80 -0.57816 
0.60 -0.38133 
0.50 -0.27026 
0.38 -0.11944 
0.30 0.~~~ 
0.25 ~.09440 
0.22 0. I7482 
0.21 0.22542 
0.20877 0.24211 
0.20864 0.24806 
0.20868 0.25384 
0.20888 0.25945 
0.20925 0.26489 
0.0978 0.27018 
0.2fOOO 0.27189 
0.21227 0.28510 
0.22980 0.32509 
0.261 t 3 0.34936 
0.30994 0.35036 
0.34667 0.33137 
0.38003 0.29904 
0.39740 0.27530 
0.41033 0.25379 

0.66802 
Q.66S~ ~‘7~6 

0.77014 
0.74736 
0.72066 
0.70507 
a.68690 

0.12525 0.15873 
0.11897 0. I5094 
0.11244 0.14129 

0.02 -0.45306 
0.04 -0.43369 
0.06 -0.41507 
0.07 -0,4O640 
0.08 -0.39874 
0.09 -0.39527 
0.090156 -0.39565 
0.090221 -0.396lS 
0.090176 -0.39675 
0.090053 -0.39732 
0.089882 -0.39785 

1.0690 
I.01631 
0.94631 
0.89952 
0.82248 
0.74382 
0.66445 
0.57654 
0.50658 
0.48~ 
0.47ooo 
0.46000 
0.45000 
0.44000 
0.43OtXl 
0.42333 
0.40000 
0.30000 
~.20000 
0.~~~ 
0.05000 
0.02000 
0.01000 
0.00500 

0.22943 0.23269 
0.19445 0.22249 
0.15254 0.20953 
0.12735 0.20135 
0.09056 0.18892 
0.05838 0.17800 
0.03057 0.16945 
0.00410 0.16383 

-0.01445 0.16282 
-0.02fU3 0.18327 
-0.02345 0.16358 
-0.02584 0. I63Q4 
-0.02820 0.16436 

0.10571 0.12826 
0.10230 Q.ZlQf9 
0.09892 0.10602 
Q.09587 0.069 
0.09586 0.065 
0.09588 0.065 
0.09594 0.055 
0.09602 0.05 
0.0961 I 0,045 
0.09620 0.04 

0.66042 
0.65924 
0.6S808 
0.65723 
0.65664 
0.65626 
0.65604 
0.65595 
0.65594 
0.65609 
0.65634 
0.65647 
0.65661 

0.0~~6~7 -0.39835 
0.08Q4SS - 0.39877 0.09628 0.035 

0.09636 0.03 0.089300 -0.39913 
0.088997 -0.39962 
0.088815 - 0.39983 

0.09648 0.02 
0.09654 0.01 
0.~965~ 0.005 
0.09655 0.0 

-0.03053 0.16486 
-0.03284 0.16541 
-0.03360 0.16562 

0.085771 - 0.3QPM 
~.08S7S5 -0.39979 

Above the gap 
1.0 -0.76695 
0.8 -0SPO54 
0.6 -0.38957 
0.5 -0.27616 
0.4 -0.14966 
0.3 0.~29 
O.21728 0.18967 
0.21069 0,22654 
0.20913 0.25830 
0.21193 0.28555 
0.21860 0.30868 
0.22888 0.32783 
0.24268 0.34288 
0.26019 0.35332 
0.28197 0.3S&OO 
0.30944 0.35426 
0.34661 0.33429 

- 0.03962 0.16746 
-0.06088 0.17816 
-0.OSO57 0.19458 
-O.OQ@I 0.21832 
-0.10678 0.23607 
-0.10988 0.25320 
-0.10953 0.26304 
-0.1081 f 0.271L3 

I .04749 
0.99583 
0.92721 
0.88131 
O.S2068 
0.72849 
0.55 
0.50 
0.45 
0.40 
0.35 
0.30 
0.25 
0.20 
0.15 
0.10 
0.0s 

0.23728 0.23978 
0.2~!0108 0.29928 
0.15770 0.21593 
0.13161 0.20750 
If.10059 0.19712 
0.~~7 O.lS347 

-0.00020 0. t6846 
-0.01406 0.16788 
- 0.02699 0,16908 
-0.03914 0.17201 
- 0.~50~ 0.17659 
-0.06167 0.18272 
- 0.07223 0.19035 
-0.08240 0. I9952 
-0.0921S 0.21049 
-0.10145 0.22398 
-0.10963 0.24228 

the gap is largely ~nde~endeut of the values of the 

Prandtl number, over the range IO&-12.6. Just out- 

side the gap, on each side, multiple solutions are found 

for each of the six y, Pr conditions. 

The range of R over which multiple sohrtions are 

found is extremely narrow below the gap and much 

wider above, just as in [IS]. This is seen in the tables. 
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Table 3. Conditions, R, and results for solutions below and Table 4. Conditions, R, and results for solutions below and 
above the gap, for q = 1.894816 and Pr = 12.6 above the gap, for q = 1.58295 and Pr = 10.6 

Ii WI 

Below the gap 
0.0 - 0.45456 

Below the gap 
0.0 -0.51021 
0.02 - 0.49008 
0.04 -0.46953 
0.05 -0.45958 

0.8209 1 0.11708 0.15010 
0.80017 0.11118 0.14281 
0.77646 O.lOSO4 0.13380 
0.74869 0.09871 0.12171 
0.73251 0.09551 0.11337 
0.71376 0.09232 0.101.5f 
0.68846 0.08933 0.07528 
0.68562 0.08917 0.07 
0.68181 0.08908 0.06 
0.68055 0.08911 0.055 
0.67964 0.08917 0.05 
0.67902 0.08925 0.045 
0.67862 0.08934 0.04 
0.47829 0.0895 1 0.03 
0.67834 0.08963 0.02 
0.67853 0.08971 0.01 
0.67865 0.08973 0.005 
0.67878 0.08974 0.0 

0.83668 
0.81187 
0.78292 
0.76644 
0.74795 

0.14091 0.17315 
0.13308 0.16128 
0.12478 0.14695 
0.12053 0.13785 
0.11625 0.12608 
0.11201 O,IO754 
0.11099 o*ro 
0.11013 0.09 
0.10970 0.08 
0.10960 0.075 
0.10957 0.07 
0.10958 0.065 
0.10962 0.06 
0.10969 0.055 
0.10977 0.05 
0.10994 0.04 
O.JlOO9 0.03 
0.11019 0.02 
0.11024 0.01 
0.11025 0.005 
0.11024 0.0 

0.02 -0.43582 
0.04 -0.41724 
0.06 -0.39937 
0.07 -0.39105 
O.OS -0.38364 
0.09 -0.37918 

0.06 -0.45026 
0.07 - 0.44246 
0.072454 -O.44113 
0.074609 -0.44053 
0.075780 -0.44086 
0.076084 -0.44125 
0.076245 -0.44174 

0.72585 
0.71925 

0.090698 -0.37941 
0.091306 -0.38031 

0.71244 
0.7075s 
0.70579 0.091357 -0.38088 

0.091296 -0.38147 
0.091148 -0.38205 
OF090975 -0.38259 
0.09OS7~ -0.38349 
0.090235 -0.3S409 
0.090013 -0.38440 
0.089949 -0.38445 
0.089915 -0.38445 

Above the gap 
I.0 -0.73662 
0.8 -0.56710 
0.6 -0.37398 

0.70436 
0.076288 - 0.44209 0.70325 
0.076243 - 0.44287 0.70243 
0.076‘134 -0.44344 
0.075982 -0.44400 
0.07563 1 -0.44496 

0.70184 
0.70145 
0.70109 
0.70110 
0.70128 
0.70152 
0.70165 
0.70179 

0.075306 -0.44566 
0.075074 - 0.44606 
0.074953 -0.44618 
0.074933 -0.44615 
0.074938 - 0.44607 

Above the gap 
1.0 -0.721563 

1.08904 
1.03537 
0.96411 
0.91647 
0.85357 
0.75810 
0.7 
0.6 
0.55 
0.5 
0.45 
0.4 
0.3 
0.2 
0.1 
0.05 

0.22244 0.22640 
0.18855 0.21648 
0.14795 0.20386 
0.12355 0.19589 
0.09454 0.18608 
0.05678 0.17316 
0.03699 0.16686 
0.00744 0.15980 

-0.0056I 0.15839 
-0.01776 0.15853 

0.5 -0.26500 
0.4 -0.14346 
0.3 0.00056 
0.26143 0.06923 
0.22261 0.16241 

1.0224 0.22317 0.23268 
0.19898 0.22593 
0.16542 0.21705 
0414279 0.21120 
0.11380 0.20368 

0.8 -0.59680 0.98826 
0.6 -0.41972 0.9393s 
0.5 - 0.30964 
0.4 -0.18104 
0.2 0.23146 
0.19631 0.26868 
0.19694 0.29973 

0.90388 
0.85398 
0.55164 
0.50 
0.45 
0.40 
0.30 
0.20 
0.10 
0.05 

0.21310 5.19971 
0.20874 0.23208 
0.20877 0.26018 
0.21265 0.28447 
0.23067 0.32250 
0.26201 0.34569 
0.31041 0.34672 
0.34674 0.32857 

-0.00698 0.17832 
-0.02166 0.17886 

-0.02916 0.16023 
-0.03995 0.16345 
-0.06012 0.17411 
-0.07890 0.19018 
-0.09642 0.21328 
-0.10419 0.23055 

-0.03493 0.18094 
-0.04736 0.18449 
-0.07031 0.19567 
-0.09121 0.21209 
-0.11007 0.23544 
-0.11798 0.25286 

0.20138 0.32614 
0.22019 0.36662 
0.25217 0.38966 
0.30160 0.38675 
0.33900 0.36365 

Only two branches, that is, two solutions were 
obtained above the gap, for all six conditions of q and 
Pr. There were also two solutions for each R just 
below the gap. However, for q = 1.58295 and 
Pv = 10.6, a third solution also arose. This elect is 
seen in the R column in Table 4. However, the third 
solution was found only over an extremely narrow 
range of R. For this solution, the extrainment velocity 
f(m) is very low, less than 0.005. 

A significant difference between the sets of solutions 
below and above the gap is seen, for example, in Table 
1 and Fig. 3. On the figure, the direction of calculation, 
down from R = l/2, is indicated by the arrows on the 
curves. That is, calculations proceeded in from R = 1 

along the upper branch of the -#‘(O) curve shown. 
It is seen that as -e(O) continues to decrease, second 
solution arises at the nose. The motion pressure P(q) 
increases to become positive at the surface. That is, 
P(0) > 0. The distributions of P(Q) across the boun- 
dary region, plotted in Fig. 7, show this effect. This 
is a result of the larger entrainment rate for these 
solutions, as indicated by the increasing entrainment 

velocity f (co) seen in Table 1. For the weaker flows, 
below the gap, P(0) is always negative. 

As an example of the effects of buoyancy force 
reversats in the range 0 < R < l/Z, on flow and mui- 
tiple solutions, Figs. 2-l 1 are given. They are all for 
the particular condition q = 1 X948 16, Pr = 11.6. This 
applies for pure water at I atm, at low temperature 
levels. Figures 2 and 3 show the variation of -4’(O), 
f(m), f”(0) and P(0) in the regions of multiple solu- 
tions both above and below the gap. On the other 
hand. Figs. 4-11 show the distributions of principat 
transport quantities locally across the boundary region, 
for several values of R. These quantities are : W(v), the 
buoyancy force ; 4(y), the temperature ; $‘(q), its slope ; 
f’(q), the tangential velocity component u; f”(s), its 
slope; P(T), the motion pressure; !f(q) -Z*(@, the 
normal component of velocity u ; and j’(q), the stream- 
function, which becomes f(oo), the entrainment. 

These dist~butions are shown for four representative 
pairs of multiple solutions, each pair at essentially the 
same vaiue of R. Two pairs are below the gap, where 
the buoyancy force W is largely upward. They are at 
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Table 5. Conditions, R, and results for solutions below and Table 6. Conditions, R, and results for solutions below and 
above the gap, for q = 1 X295 and Pr = 1 I .6 above the gap, for q = 1.58295 and Pr = 12.6 

R pm -4’(O) s”(O) S(a)) R P(O) - $w) f”(O) f(a) 

Below the gap 
0.0 -0.49061 0.86946 0.13180 0.16369 
0.02 -0.47134 0.84361 0.12442 0.15262 
0.04 -0.45165 0.81347 0.11661 0.13928 
0.06 -0.43317 0.77716 0.10858 0.12010 
0.07 -0.42557 0.75445 0.10457 0.10370 
0.073243 -0.42383 0.74552 0.10329 0.095 
0.075621 -0.42319 0.73770 0.10240 0.085 
0.077216 -0.42399 0.73015 0.10185 0.070 
0.077381 -0.42451 0.72855 0.10181 0.065 
0.077421 -0.42510 0.72732 0.10183 0.060 
0.077368 -0.42570 0.72640 0.10187 0.055 
0.077249 -0.42629 0.72576 0.10194 0.050 
0.076912 -0.42737 0.72506 O.fO210 0.040 
0.076S65 -0.42818 0.72490 0.10226 0.030 
0.076296 - 0.42869 0.72499 0.10237 0.020 
0.076138 -0.42892 0.72519 0.10243 0.010 
0.076100 -0.42893 0.72530 0.10244 0.005 
0.076089 -0.42889 0.72543 0.10245 0.0 

Below the gap 
0.0 -0.49986 
0.02 -0.48019 
0.04 - 0.46009 
0.06 -0.44124 
0.07 -0.43354 
0.072069 -0.43236 
0.074669 -0.43141 

0.85365 
0.8283 1 
0.79874 
0.76308 

0.13608 0.16814 
0.12849 0.15700 
0.12045 0.14290 
0.11294 0.12294 

0.74068 0.10806 0.10559 
0.73516 0.10723 0.10 
0.72722 0.10620 0.09 

0.10566 0.08 
0.10546 0.07 
0.10544 0.065 
0.10547 0.06 
0.10553 0.055 
0.10560 0.05 
0.10577 0.04 
0.10592 0.03 
0.10603 0.02 

0.076141 -0.43154 0.72149 
0.076789 -0.43235 0.71763 
0.076893 -0.43288 
0.076889 - 0.43347 
0.076SOS -0.43406 
0.076670 -0.43463 
0.076325 -0.43565 
0.075988 -0.4364I 
0.075736 -0.43687 
0.075597 -0.43705 

0.71628 
0.71525 
0.71450 
0.71399 
0.71347 
0.71339 
0.71353 
0.71375 
0.71387 
0.71400 

0.10608 0.01 
0.075568 - 0.43704 
0.075564 -0.43698 

0.10610 0.005 
0.10609 0.0 

Above the gap 
Above the gap 

1.0 -0.71150 
0.8 -0.58433 
0.6 -0.41088 
0.4 -0.17709 
0.2 0.22536 
0.19811 0.23761 

1.0 
0.8 
0.6 
0.5 
0.3 
0.2 
0.19524 
0.19717 
0.20243 
0.22204 
0.25394 
0.30248 
0.33901 

- 0.69797 
-0.57319 
-0.40297 
-0.29716 
-0.02316 

0.22003 

I .06289 0.20918 
1.02745 0.18654 
0.97672 0.15517 
0.93990 0.13401 
0.80565 0.06997 
OS7996 -0.00467 
0.50 - 0.02500 
0.45 -0.03671 
0.40 -0.04776 
0.30 - 0.0683 1 

0.21971 
0.21332 
0.20493 
0.19940 
0.18239 
0.16818 
0.16925 

1.04336 0.21576 0.22580 
1.00855 0.19240 0.21924 
0.95872 0.16000 0.21062 
0.87168 0.11027 0.19764 
0.56639 0.00570 0.17294 
0.55 -0.01028 OS17291 0.27282 

0.30029 0.19561 0.27116 0.50 -0.02353 0.17375 
0.19701 0.30018 0.45 -0.03594 0.17602 
0.20190 0.32508 0.40 -0.04762 0.17967 
0.20998 0.34613 0.35 -0.05871 0.18461 
0.22114 0.36337 0.30 -0.06929 0.19077 
0.25309 0.38528 0.20 -0.08913 0.20679 
0.30296 0.38261 0.01 -0.10721 0.22947 
0.33900 0.36065 0.05 -0.11493 0.24638 

0.17169 
0.17542 0.32389 

0.36029 
0.38124 
0.37875 
0.35776 

--._____ 

0.18641 
0.20208 
0.22415 
0.24061 

0.20 -0.08724 
0.10 -0.10462 
0.05 -0.11217 

- 

figures, the four negative buoyancy force solutions, at 
R = 0.21 and R = 0.38, are easily distinguished from 
each other. They are also very different for the other 
solutions. However, the four solutions below the gap 
cannot be readily distinguished from each other at the 
scale at which Figures 4, 5, 7 and 9 are drawn. 

The distributions of W(q,R) vs q illustrate this 
difference. Those at R = 0.21 and R = 0.38, both u 
and I, steadily decrease to a negative minimum as q 
increases outward. The u and I curves in each pair 
have essentially the same value at their minima. The 
lower solutions reach their minimum nearer the sur- 
face than do the upper solutions. The curve for 
R = 0.38, I has its negative minimum, about - 0.16, 
at 7 2: 2.8. The distributions of W(q,R) vs q for the 
other side of the gap all descend to a much larger 
negative minimum and rise slowly to 0 as q increases 
to 9m. 

The b(q) distributions shown in Fig. 5 have the 
same qualitative behavior. They descend according to 
equations (I 5) and (IQ, from #(O) = 1 strictly mono- 
tonically, to 0. The results below the gap are again 
essentially indistinguishable from each other. The 
R = 0.38Jcurve has by far the slowest initial descent. 
The curve for R = 0.38,~ descends most rapidly. 

R = 0.089423 and 0.090822. The second value is very 
near the lower boundary of the gap. The two pairs 
above the gap, largely downward W, are at R = 0.38 
and 0.21. The second value is near the upper boundary 
of the gap. The last two pairs are very far apart, com- 
pared with the pair below the gap. Both of the second 
values above are near the two noses of the bifurcation 
diagrams in Figs. 2 and 3. The two separate solutions 
for each of the four pairs chosen are labelled on Figs. 
4-11 as u for upper branch and i for lower branch. The 
upper branch, on each side of the gap, are the first 
solutions, coming toward the gap from R = 0 and 
R = l/2, respectively. This is apparent in Figs. 2 and 
3. Above the gap, the upper branch solutions are 
more vigorous transport, at higher -(b’(O). 

Figures 4-l 1 indicate substantial differences 
between the two solutions at each of the four values 
of R. The distribution corresponding to R = 0.38,1 
stands out from the rest in each figure. It has the 
lowest --4’(O), in Fig. 9, and most extreme maxi- 
mum and minimum values of tangential and normal 
components of dimensionless velocity, f’(q) and 
3f(q) -2qf’(q), in Figs. 6 and 11. In all of these 
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0.091, ” and C 
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FIG. 4. The buoyancy force distribution W(n) across the 
thermal boundary layer for an isothermal surface, Pr = 11.6, 
and q = 1.894816. In the lower and upper regions of R of 
multiple solutions, the upper and lower branch solutions 
are shown as IA and I for the conditions (a)-(d) below. (a) 
R = 0.089; where f(co) = 0.077 and 0.006, essentially the 
same result on both branches. (b) R = 0.091; where 
f(co) = 0.060 and 0.055. (c) R = 0.38; where --d’(O) = 
0.822 and 0.020. (d) R = 0.21; where -q%‘(O) = 0.507 

and 0.423. 

FIG. 5. The temperature distribution 4(q) for the same con- 
ditions as in Fig. 4. The fourth through the seventh curves 

are essentially the same. 

FIG. 6. The distribution of the tangential velocity component 
f’(q) for the same conditions as in Fig. 4. 

Some of the solutions above the gap have major 
reversals in the tangential velocity profiles (see Fig. 
6). Most notable is the very highly bidirectional flow, 
for R = 0.38,1. This results from the very large reversal 
of W(q) seen in Fig. 4. On the other hand, the solutions 
below the gap show, at most, slight outside reversals, 
for R = 0.89423,l and 0.90822,f. The outside reversals 
first occur at f(co) = 0.05 as f(co) decreases from 
0.8. These reversals become stronger as f(co) de- 
creases from 0.05 to 0. These solutions correspond 

811 0,091, u and c 

0 

‘0.00 2’.00 4.00 s:oo 

T 

Fu;. 7. The pressure distribution P(q) for the same condition 
as in Fig. 4. The values for R = 0.089 and 0.091 are essentially 

the same. 
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FIG. 8. The streamfunction distribution f(g), where f(m) is the entrainment velocity, 
conditions as in Fig. 4. 

for the same 

to points below the nose of the f(a) curve in Fig. 2. 
This behavior contrasts with that for flow adjacent to 
a vertical isothermal surface. Then the corresponding 
outside reversals in f’ first occur for values of f(oo) 
above the nose in the analogous bifurcation diagram. 
For the solutions below the gap, P(0) is always nega- 
tive for all solutions. See Tables I-6. 

:: 
d 

0.089, and 0.091, 

dl/ 
‘0.00 2.00 4.00 6.00 8.00 

rl 

FIG. 9. The slope of the temperature distribution, K(q), for 
the same conditions as in Fig. 4. 

In the region above the gap, some but not all of the 
new solutions found have inside tangential velocity 
reversals, that is, in f’(q). These first occur at 
-4’(O) = 0.557, for R = 0.21, as -$‘(O) decreases 
from 1.0690 at R = 1.0. These reversals arise above 
the nose of -4’(O) in the bifurcation diagram, Fig. 3, 
just as for vertical flows, see El-Henawy ef al. [IS]. 
However, here these reversals occur later, that is, 
closer to the nose. None of the solutions found by 
Gebhart et al. [lo] had inside reversals. Further, for 

FIG. 10. The distribution of the shear stress parameter f”(q) 
for the same conditions as in Fig. 4 
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FIG. 11. The distribution of the normal component of 
velocity, 3f-2qf’, for the same conditions as in Fig. 4. 

the same value of -@(O) as in vertical flows, the 
inside reversals are stronger. For example, here, at 
Cp’(0) = 0.02 for R = 0.38 

pF1 f’(q) =f’(0.9278) = -0.0594 for q = 50. 
** 

For vertical flows, for the same values of q and PI-, at 
-4’(O) = 0.02 for R = 0.43060 

~i,l:f’(q) = f’(0.8991) = 0.0511 for q, = 100. 
2% 

For these same solutions, for horizontal flow we have 

~~~~(~) = f(l.8194) = -0.0623 
. L 

while for the vertical flow 

r$nf(“) = f(l.8297) = -0.0620. 
. n 

Again considering the solutions above the gap, it is 
seen that, as solutions march down the bifunction 
curve, of -(p’(O) vs R in Fig. 3, P(0) increases mono- 
tonically upward toward zero. It becomes positive 
slightly before f”(0) changes sign. It continues to 
increase as -d’(O) decreases further. Continuing cal- 
culations do result in P(0) again decreasing. The dis- 
tributions of P(q) are shown in Fig. 7. For both 
R = 0.21 and 0.38, both the upper and lower solutions 
have reversals. Those for R = 0.38 are about twice 
those for R = 0.21. 

The streamfunction distributions, f(q) in Fig. 8, are 
all readily disting~shed from each other. Again 
R = 0.38,f stands out from the rest. It has the deepest 
negative minimum and the largest value of S(m). 
For the gradient -4’(O) in Fig. 9 all the curves for 

conditions above the gap may be distinguished from 
each other. The largest magnitude of #‘(O) is for 
R = 0.38,~. The smallest is for R = 0.38,1-a very 
weak flow. All of the other conditions result in inter- 
mediate values. 

The distributions f”(q) are seen in Fig. 10. The 
most notable one is again that for R = 0.38,1. There 
is a large negative value of f”(O). This follows again 
from the large inside reversal of W(n) seen in Fig. 4. 
That leads to the low heat transfer rate, seen as -(b’(O) 
in Fig. 3. A similar tendency is seen in Fig. 10, at 
R = 0.21. This effect, and the flow reversals seen in 
Fig. 6, would perhaps have very destabili~ng effects 
on such flows. Multiple inflection points arise. There 
are also two points of inflection for the solutions 
below the gap, with corresponding implications of 
instability. That the flow reversals off’, both inside 
and outside, occur later for these horizontal flows, 
than for vertical flows, suggests that comparable hori- 
zontal flows may be more stable. 

Figure I1 shows the distributions of the normal 
component of velocity, u, which is proportional to 
3f’-2rf: The very different behavior for R = 0.38,1 
again results from the major reversals of W(v) and of 
u of’. The large tangential flow effects generate 
large gradients in the cross-stream component. Some 
of this same effect is also seen for R = 0.2 1. The weak 
and more uni-directional flows below the gap do not 
show these characteristics. 

SUMMARY 

Previous calculations of horizontal flow in cold 
water clarified transport generally over a wide range 
of R. The two limiting results given in the range 
0 < R < l/2 in ref. [lo] indicate that buoyancy force 
reversals there soon result in diminished heat transfer 
and shear stress, -4’(O) and f”(0). 

The above calculations examined such questions in 
much greater depth and detail. The gap in the solu- 
tions was significantly narrowed and its extent deter- 
mined. Multiple solutions arose in the regions at each 
edge. Transport immediately below the gap is weak, 
for all solutions, because of the outside force buoy- 
ancy reversal. However, the two sets of multiple so- 
lutions above the gap have very different charac- 
teristics from each other. The buoyancy force reversal 
is then inside. The upper branch results show a vigor- 
ous, relatively high heat transfer rate flow. The lower 
branch results give much lower heat transfer. The flow 
then results from a more detailed inter-play of the 
flow, pressure and viscous effects, 

The multiple solutions arise, coming in toward the 
gap on both sides, in conjunction with the increasingly 
large buoyancy force reversal across the thermal layer. 
Multiple responses to this reversal eventually satisfy 
the governing equations, in these narrow ranges. It 
is not now known why and how increasingly severe 
reversals preclude further solutions. Nevertheless, the 



1666 I. Et-~ENAWY @I al. 

smaorh turning back of the solution curves at both 
edges of the gap, iu Figs. 2 and 3, strongly suggest 
that there are xx3 other so&&ions just inside those ‘* 
retions. 

The second solutions found for vertical flows, by 
El-Henawy et ai. [ 151, have been analyzed for their 10. 
stability by El-Henawy et nl. [ls]. All such flows were 
found to be unstable. This would be expected also for 
the lower branch solutions given here. II. 
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R&n&--La force d’Ar&im&de qui &uite des gradients de tempbrature dans l’eau froide est hidi- 
rectionnelle si le domaine de tempbrature couvre l’extremum de den&&. Plusieurs condquences de grande 
gchelle ou non sent connues maintenant, pour quelques configurations parmi les plus courantes. Les 
premiers calculs pour les tcoulements horizontaux laissent un large damaine de conditions pour lesquelles 
on n’obtient pas des solutians de couche limite. Des r&hats prhmts r&trQissent ConsidCrablement ce 
domaine. 11s d&ermine& aussi avec pr6cision te fos& rksiduet sans solution en fonction d’un parametre de 
den& extrbmale R. Ces calculs trouvent des solutions multiples dans des damaines de R de chaque ~53 
de ce foss& Dans qudques r&gkms, les propri&& du second @&me de solutions sont t&s di&entes et 
~nhab~tuelles, parmi les &co@ments induits par gravit& De t&s faibles bufements sont trouv&s qui, 
n&anmoins, peuvent &ire t&s &tables. Des transferts thermiques extrgmement r&&its apparaissent dans 

ces conditions. 
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MEHRFACHE STATIONARE LGSUNGEN FUR WAAGERECHTE 
AUFTRIEBSINDUZIERTE STROMUNGEN IN KALTEM WASSER 

Zusammenfassung-Die Auftriebskraft aufgrund von Temperaturunterschieden im kalten Wasser kann 
zwei entgegengesetzte Richtungen besitzen, wenn der Temperaturbereich das Dichtemaximum einschliel3t. 
Viele Auswirkungen dieses Phlnomens-im Grollen wie im Kleinen-auf einige der ge- 
brauchlichsten Strijmungsanordnungen sind bekannt. Erste Berechnungen von horizontalen Strijmungen 
zeigten, dal3 sich fur einen weiten Bereich keine Grenzschichtlijsungen ergeben. Die Ergebnisse, von denen 
hier berichtet wird, engen diesen Bereich erheblich ein. Sie bestimmen such exakt das Residuum, fur das 
keine Liisungen existieren, mit Hilfe eines Parameters R fur das Dichtemaximum. Interessant ist weiter, 
da13 Mehrfachliisungen auf beiden Seiten des Residuums gefunden wurden, und zwar tiber ganze Bereiche 
von R. In einigen Bereichen sind die Eigenschaften der Zweitlijsungen sehr verschieden und ungewiihnlich 
fiir thermische Auftriebsstrijmungen. Sehr schwache Stromungen wurden festgestellt, die dennoch sehr 

instabil sein kiinnen. Unter gewissen Bedingungen wird der Wirmeiibergang sehr schlecht. 

MHOXECTBO CTAHHOHAPHMX PEIIIEHMH AJDI FOPM30HTAJIbHbIX IIOA’bEMHbIX 
TElrEHMH B XOJIOAHOH BOAE 

AHHO+aUHfi-nOnseMHa5I tuna, a03nmrarontan n3-3a nepenanoe reMneparyp 6 xonon~ofi Bone, nhfeer 
naa ttanpasnenwa B TOM cnyqae, ecnn nnana30n rebfneparyp atcnroqaer 3tccrpeManbnoe 3nanemie nno~- 

HOCTA. B HaCTOntnee BpeMRH3BeCTHO 6onbmoe WCJIOMaCLUTa6HbIX WTOHKI~XC~~~~(CTB~~~~TO~OIBJI~HHII 

jVI%l HCKOTOpbIX nan6onee I13BeCTHbIX l$OpM Te'ieHWI. B nepBbIX paCYeTaX rOpH30HTa,IbHbIX TeqeHBti 

6bm BbIllBJIeH UISipOKAii 11Uana30H yCJIOB&iii,AJIfi KOTOpbIX PeUleHWl nOrpaHWiHOrOCJlOSI He 6bInH nOJty- 
',CHbl.,-,O."y~eHHbIe B HaCTOSlUleii pa6ore pe3yJIbTaTbI 3HaWiTeJlbHOCy~aIOT 3TOTLViana30H.o~H TaK)Ke 

TogHo onpenenaror TOT ocrarosnbtti npoh4emyrox, B KOTOPOM peluewin ~TC~TCTB~E~T, repe3 napabrerp 
3KCTpeMyMa IIJIOTHOCTA x.TaKoi Ee HHTepeC II~nCTaBJUIeT TOT +aKT,'fTO C nOMOUlbKl3TiiX paC'IeTOB 

06HapyxeHO 0TcyTcTeue ennHcTBeHHocTIi peweHsn 38 npenenaMn wana30Ha R no KaxcnyI0 CTOP~HY 

npOMexyTKa. B HeKOTOpbIX o6nacTnx CBOiiCTBa BTOpOrO na6opa PerUeHBii He06bIVHbI B O'IeHb CHJlbHO 

OTJII1'lIEOTCR OT LIpyRHX TC’ICHHfi, BbI3BaHHbIX llOLWMHOii CWlOfi. HafiJlCHbI O'IeHb cna6bre Te'ICHHR, 

KOTOpbIe, TCM He MeHCC, MOryT 6bITb HeyCTOfi4WBbIMH. HeKOTOpbIM y‘!JIOBHRM COOTBeTCTByIOT OWHb 

h4anbIeK03+jwuieHTbITennonepeHoca. 


